Mark schemes

1. (a) atomic number
(b) number of neutrons

1

1
(c) Alpha
(d) Beta
(e) decrease
increase
this order only
(f) the time it takes for the count rate of a sample to halve
(g) so the activity of the source is approximately constant
2. (a) nuclei do not accept atoms
decreases
(b) $\mathrm{m}=0.004(\mathrm{~kg})$
$E=0.004 \times 5200 \times 50000000$
allow a correct substitution of an incorrectly/not converted value of m
$E=1.04 \times 10^{9}(\mathrm{~J})$
or
$E=1040000000$ (J)
allow a correct calculation using an incorrectly/not converted value of m

(c) any two from:

- to make sure the fusion process is possible
- to develop an understanding of the process
- to make adaptations to the process
- to assess the efficiency of the process
- to make predictions
- assess safety risks
- to assess environmental impact
- set-up cost is lower (for small scale experiments)
(d) releases carbon dioxide allow releases greenhouse gases
which causes global warming allow which causes climate change

OR

releases particulates
which causes global dimming
or
which cause breathing problems

OR

releases sulfur dioxide
which cause acid rain
OR
releases nitrogen oxides
which cause breathing problems
or
which causes acid rain
3. (a) radiotherapy
(b) a neutron
energy
energy and gamma rays can score in reverse order
gamma rays
(c) An alpha particle is the same as a helium nucleus.
(d) 24000 (years)
(e) 24000 (years)
or
their (d)
(f) Any one from:

- irradiation
- cancer
- genetic damage
- mutations to DNA / genes
- radiation sickness / poisoning

4. (a) ${ }_{84}^{210} \mathrm{Po} \rightarrow{ }_{82}^{206} \mathrm{X}+{ }_{2}^{4} \mathrm{He}$
(b) Alpha radiation is highly ionising
(c) Change in mass $=460-280$
allow reading between 460 and 465
allow reading between 278 and 282

Change in mass = $180(\mathrm{mg})$
allow an answer between 178 and 187 inclusive for 2 marks
(d) $130(\mathrm{mg})$
allow an answer between 126 and 150 (mg) inclusive
(e) an electron

> in this order only
a positive
5. (a) A
(b) C
(c) repels
increases
in this order only
(d) another scientist repeats the experiment and gets the same results
6. (a) B
reason only scores if B is chosen
americium has an atomic number of 95
allow proton number for atomic number
allow B has a different atomic number
allow B has an atomic number of 94
(b) 430 (years)
allow an answer between 420 and 440 (years)
(c) 430 (years)
or
their answer to part (b)
allow an answer between 420 and 440 (years)
7. (a) nucleus
neutron
gamma rays
(b) $\frac{25000000}{2400000}$

11
an answer of 10.4 with no working scores 1 mark
an answer of 11 scores 2 marks
(c) any two from:

- waste is radioactive allow nuclear waste
- waste has a long half-life allow waste remains dangerous for a long time
- waste is toxic
- waste needs to be buried allow waste is difficult to dispose of
- risk of catastrophic accidents
allow named accident e.g. Fukushima, Chernobyl, Three Mile Island
- fuel is non-renewable
(d) similarity:
(carbon dioxide concentration and global temperature have) both increased allow they both show a positive correlation

difference:

the carbon dioxide (concentration) continues to increase whereas temperature (increase) levels off allow carbon dioxide (concentration) increases more quickly than temperature (increase)
8. (a) count rate $=\frac{819}{60}$

1
count rate $=13.65$
corrected count rate $=13.35$ (per second)
allow an answer of
background $=0.30 \times 60$
= 18 (per minute)
corrected count rate
= 819-18
corrected count rate
$=801$ per minute
an answer of 13.35 (per second) scores 3 marks
an answer of 13.95 (per second) scores 2 marks
an answer of 801 (per second) scores 2 marks
(b) activity $=1250 \times 180$
activity $=225000(\mathrm{~Bq})$
an answer of $225000(B q)$ scores 2 marks
(c) yearly dose $=0.003 \times 365$
allow yearly dose $=1.095(\mathrm{mSv})$
which is $\ll 100$ (mSv)
or (well) below the lowest dose with evidence of causing cancer / harm
(d) people are able to compare a radiation risk / dose / hazard to the radiation dose from (eating) bananas
9. (a) 7
(b) 3
number of protons
reason only scores if 3 chosen
(c) levels
(d) ${ }_{2}^{4} \mathrm{He}$

> correct order only
(e) shorter half-life (than the other sources)
exposure time to radiation is shorter
10. (a) cosmic rays
radon gas
1

1

1

1

1

1

1
(so is) attracted to positive plate or
(so is) repelled by negative plate
11. (a) Alpha - two protons and two neutrons

Beta - electron from the nucleus

Gamma - electromagnetic radiation
(b) Gamma

Beta
Alpha

$$
\text { allow } 1 \text { mark for } 1 \text { or } 2 \text { correct }
$$

(c) any two from:

- (radioactive) source not pointed at students
- (radioactive) source outside the box for minimum time necessary
- safety glasses or eye protection or do not look at source
- gloves
- (radioactive) source held away from body
- (radioactive) source held with tongs / forceps accept any other sensible and practical suggestion
(d) half-life $=80 \mathrm{~s}$
counts / s after $200 \mathrm{~s}=71$
accept an answer of 70
(e) very small amount of radiation emitted accept similar / same level as background radiation

12. Level 3 (5-6 marks):

A detailed and coherent explanation is provided. The student gives examples that argue a strong case and demonstrate deep knowledge. The student makes logical links between clearly identified, relevant points.

Level 2 (3-4 marks):

An attempt to link the description of the experiment and the results with differences between the two models. The student gives examples of where the plum pudding model does not explain observations. The logic used may not be clear.

Level 1 (1-2 marks):

Simple statements are made that the nuclear model is a better model. The response may fail to make logical links between the points raised.

0 marks:

No relevant content.

Indicative content

- alpha particle scattering experiment
- alpha particles directed at gold foil
- most alpha particles pass straight through
- (so) most of atom is empty space
- a few alpha particles deflected through large angles
- (so) mass is concentrated at centre of atom
- (and) nucleus is (positively) charged
- plum pudding model has mass spread throughout atom
- plum pudding model has charge spread throughout atom

